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We consider electroosmotic flows (EOF) generated by temporally varying zeta potential which is usually
adopted for pumping or mixing of fluids. In this case the dynamics of ions in the electric double layer
(EDL) influences the induced electric field and consequently the EOF significantly. Therefore, the appro-
priate model should be the Nernst–Planck (NP) model for all zeta potentials or the Debye–Hückel (DH)
model for low zeta potentials rather than the Poisson–Boltzmann (PB) model which is based on the equi-
librium distribution of ions in the EDL. In the present investigation, we compare the predictions from the
DH model and the PB model with the exact ones from the NP model for a range of frequency of zeta
potential oscillation. It is found that one may adopt the PB model when the frequency is low and the
DH model when the zeta potential is low. However, for either high frequency of zeta potential oscillation
or large value of zeta potential, one must adopt the NP model to get accurate predictions of EOF.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Recently there have been a renewed interest in electroosmotic
flow in capillaries due to its relevance to many microfluidic sys-
tems based on the lab-on-a-chip concept. In these microfluidic
systems the target chemical species are delivered by activating
electroosmotic flow. Electroosmotic flow is induced when an elec-
tric field is imposed through the electric double layer, where the
separation of positive and negative ions occurs because of the zeta
potential at the microchannel wall [1]. The electric force acting on
these ions is the driving force of the electroosmotic flow. Usually,
one of the following three models is adopted in the analysis of elec-
troosmotic flows; the Nernst–Planck (NP) model, the Debye–Hüc-
kel (DH) model and the Poisson–Boltzmann (PB) model. In the
Nernst–Planck model the conservation equations for the cations
and anions are solved coupled with the Navier–Stokes equation
to find the electric potential in the electric double layer induced
by ionic unbalance near the wall. Though the most rigorous model,
it is difficult to solve the NP model numerically due to the strong
nonlinear couplings between velocity, cation concentration, anion
concentration and the electric potential induced by the ionic
unbalance. A commonly accepted approximation to the Nernst–
Planck model is the Debye–Hückel model. The DH model can be
derived from the NP model when the zeta potential is small. Under
many circumstances the ionic distribution in the electric double
layer is not disturbed at a fixed zeta potential, and it follows the
ll rights reserved.
equilibrium Boltzmann distribution. In these cases the induced
electric field is governed by the Poisson–Boltzmann equation and
is decoupled from the velocity field, resulting in the Poisson–Boltz-
mann model which is the most widely employed model in the
analysis of electroosmotic flows due to its simplicity. For a fixed
zeta potential, the predictions of the PB model agree with those
of the NP model at small values of the Debye length, which occur
at large zeta potential and high ionic concentrations [2].

However, there have been attempts to vary wall zeta potential
directly by imposing external electric field at the microchannel
wall to control electroosmotic flows. When an electric field is ap-
plied perpendicular to the channel, a radial electric potential gradi-
ent is created across the insulating channel wall that allows for
direct control of the zeta potential and the resulting electroosmotic
flow. The use of ultrathin insulating walls allows significantly
small voltages to create extraordinary fields required to have effec-
tive field-effect flow control [3–6]. It is also found that application
of a AC voltage across the channel wall generates electroosmotic
flows, resulting in pumping or mixing of fluids [7–10]. For the anal-
ysis of electroosmotic flows generated by the temporally varying
zeta potential, as in the above applications, most investigators have
adopted the Debye–Hückel model which permits analytic solutions
in certain flow configurations [7,8]. However, the DH model is valid
only for small values of zeta potential. In the present investigation,
we compare the induced potential and velocity fields obtained
from the Nernst–Planck model, the Debye–Hückel model and the
Poisson–Boltzmann model systematically when the zeta potential
varies sinusoidally at various frequencies, and suggest the range
of validity of the DH and PB models.
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Nomenclature

D diffusivity of ions
e elementary charge
Jþ cationic current
J� anionic current
kB Boltzmann constant
L characteristic length of the system
N difference between anionic and cationic concentration

ðn� � nþÞ
n0 bulk ionic concentration
nþ cationic concentration
n� anionic concentration
P pressure
Re Reynolds number
Sc Schmidt number
T temperature
t time
U characteristic velocity of the system
v velocity vector

vz axial velocity
y normal direction to the wall
z valence of ions

Greek symbols
a parameter defined in Eq. (6)
b parameter defined in Eq. (6)
d parameter defined in Eq. (6)
�0 permittivity of vacuum
� dielectric constant
f0 reference zeta potential
f zeta potential
j Debye length
l viscosity
q fluid density
/ external electric potential
w induced electric potential
x frequency of zeta potential oscillation
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2. Models of electroosmotic flows

For simple electrolytes that dissociate into two equally charged
ions of valence z and�z, the dimensionless governing equations for
electroosmotic flows may be written under the assumption of the
Gouy–Chapman model as [2,11].

@nþ�

@t�
þ v� � rnþ� ¼ 1

ScRe
r�2nþ� þ a

ScRe
r� � ðnþ�r�w�Þ

þ a
ScRe

r� � ðnþ�r�/�Þ ð1Þ

@n��

@t�
þ v� � rn�� ¼ 1
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r�2n�� � a

ScRe
r� � ðn��r�w�Þ

� a
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r�2w� ¼ b
2
ðn�� � nþ�Þ ð3Þ

@v�

@t�
þ v� � rv� ¼ �r�P� þ 1

Re
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r� � v� ¼ 0 ð5Þ

In the above equations the dimensionless variables have been de-
fined as follows:

x� ¼ x
L
; w� ¼ w
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qf U
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kBT
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¼ L22n0ez

e0ef0
; d ¼ zen0f0
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2 ;
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qf LU
l
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qf D

ð6Þ

where, nþ is the number concentration of the cation, n� is that of
the anion, D is the diffusivity of ions, z is the valence, e is the ele-
mentary charge, kB is the Boltzmann constant, T is the absolute tem-
perature, w is the local electric potential induced by ions, / is the
externally imposed electric potential, v is the velocity, qf is the fluid
density, P is the pressure, l is the viscosity, e0 is the permittivity of
the vacuum and e is the dielectric constant, L is the width of the
microchannel, n0 is the bulk ionic concentration and f0 is the sur-
face electric potential, which is taken to be the same as the zeta po-
tential, at a reference position and j is the Debye length
characterizing the depth of the electric double layer. The electroos-
motic flow model composed of Eqs. (1)–(5) is called the Nernst–
Planck (NP) model. Eqs. (1) and (2) represent the conservation
equations for the cations and anions, both of which induce electric
field w� in the electric double layer. Eq. (3) shows that the ionic
unbalance in the electric double layer gives rise to the induced po-
tential w�. The ionic unbalance also acts as a body force in the
momentum Eq. (4) when there is external potential gradient
r�/�. The Nernst–Planck model takes care of the dynamic effects
of ions and is the most rigorous model to be considered in the pres-
ent investigation. From now on, we delete the asterisk indicating
dimensionless variables for the sake of brevity.

Next, we show conditions under which the Debye–Hückel mod-
el is derived from the NP model. When the values of a is small,
which corresponds to a weak zeta potential, we may approximate
the dimensionless ionic fluxes as follows:

J� � vn� � 1
ScRe

rn� � z�a
ScRe

n�ðrwþr/Þ

� vn� � 1
ScRe

rn� � z�a
ScRe

ðrwþr/Þ ð7Þ

since the contribution of the last term in the right hand side of the
above equation is not significant compared with other terms. Then
the last two terms of Eqs. (1) and (2) are approximated as

a
ScRe

r � ðn�rwÞ ¼ a
ScRe

r2w;
a

ScRe
r � ðn�r/Þ ¼ a

ScRe
r2/ ð8Þ

Defining a new variable N such that

N � n� � nþ ð9Þ

and exploiting the fact that the external potential / satisfies
r2/ ¼ 0, the set of equations defining the NP model, Eqs. (1)–(4),
reduces to the following set of equations called the Debye–Hückel
(DH) model:

@N
@t
þ v � rN ¼ 1

ScRe
r2N � ab

ScRe
N ð10Þ

@v
@t
þ v � rv ¼ �rP þ 1

Re
r2v þ Ndr/ ð11Þ
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Fig. 1. Effect of boundary conditions (a) the comparison of NP-d and NP-n models and (b) the comparison of DH-d and DH-n models.
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In the DH model, the electroosmotic body force in the momentum
equation is given by N and the induced potential w is not need. If
we need the w field, it can be found by solving the following equa-
tion a posteriori.

r2w ¼ b
2

N ð12Þ

The DH model permits analytic solution because it is linear in N,
even though it takes care of the ionic transport. Thus many investi-
gators have adopted the DH model to study the effect of the devia-
tion of ionic distributions from the equilibrium ones, although the
DH model is valid only at small zeta potential values.

Another approximation of the NP model is the Poisson–Boltz-
mann model which is derived under the condition that ionic distri-
butions in the electric double layer is in equilibrium, which is valid
when the convective transport of ions is negligible and ionic distri-
bution is at the steady state within a very thin electric double layer.
Under these assumptions, Eqs. (1) and (2) are easily integrated to
the following analytic expressions.

nþ ¼ expð�awÞ; n� ¼ expðawÞ ð13Þ

In the above derivation, we implicitly adopt the boundary condi-
tions such that rw ¼ 0; w ¼ 0; rn� ¼ 0; n� ¼ 1 at the far field
from the channel walls, which are valid if the electric double layer
does not overlap at the center of the microchannel. Substituting Eq.
(13) into Eq. (3), we find the Poisson–Boltzmann equation for the
induced electric potential w:

r2w ¼ b sinhðawÞ ð14Þ

Using Eqs. (13) and (4) becomes

@v
@t
þ v � rv ¼ �rP þ 1

Re
r2v þ 2d sinhðawÞr/ ð15Þ

Eqs. (13)–(15) constitute the Poisson–Boltzmann (PB) model. The
PB model is valid even for large values of zeta potential and high
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bulk ionic concentration, which corresponds to a thin electric dou-
ble layer. However, it does not take care of the convective transport
and the transient behavior of ionic concentrations.
3. Comparison of the Nernst–Planck model, the Debye–Hückel
model and the Poisson–Boltzmann model

We consider a long straight slit microchannel without pressure
gradient under a constant external electric field where the spatially
homogeneous zeta potential varies temporally, which induces
electroosmotic flows. Typical parameter values for the electroos-
motic flows in various microfluidic devices are:

z ¼ 1; f0 ¼ 0:1V ; T ¼ 298 K; L ¼ 10�4m;

�r ¼ 78:5; U ¼ 8� 10�4ms�1; n0 ¼ 10�4molL�1 ð16Þ

For the above parameter values, it is found that

a¼ 3:89; b¼ 2:777�106; d¼ 2:85�10�3a2b; Re¼ 0:1; ð17Þ
and the Debye length j given by L=
ffiffiffiffiffiffi
ab
p

is less than one thousandth
of the channel width. The Schmidt number Sc for cations and anions
is taken to be the same value 400, which corresponds to the case of
Kþ and Cl� approximately. Since the bulk ionic concentration n0

affects b, we find that j increases a threefold if n0 decreases ten
times. Around the central region of the microchannel where the
end effects are negligible, the following conditions are valid:

vx ¼ vy ¼ 0;
@

@z
¼ 0 ð18Þ

where z is the axial direction and x and y are the cross-sectional
coordinates of the microchannel. Under the conditions of Eq. (18),
the continuity Eq. (5) is satisfied automatically and the convective
transport terms in the above equations, v � rn�; v � rN and
v � rv, vanish. Then the velocity, the ionic concentrations and the
internal electric potential vary only in the normal direction to the
microchannel walls. Let y denote the normal direction to the micro-
channel wall. The governing equations and relevant boundary con-
ditions for the NP model, the DH model and the PB model may be
written as follows:
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NP model
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@2w
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ðn� � nþÞ ð21Þ

@vz

@t
¼ 1

Re
@2vz

@y2 þ dðn� � nþÞ @/
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ð22Þ

with the following boundary conditions.
	 y ¼ 0; nþ ¼ e�af; n� ¼ eaf; w ¼ f; vz ¼ 0 ð23Þ
	 y ¼ 1:0; nþ ¼ e�af; n� ¼ eaf; w ¼ f;vz ¼ 0 ð24Þ

Since the boundary conditions, Eqs. (23) and (24), are symmetric with
respect to y ¼ 1=2 and the solution of Eqs. (19)–(22) are

nþ ¼ 1; n� ¼ 1; w ¼ 0; @vz

@y ¼ 0 in the bulk flow domain, the bound-

ary conditions given by Eq. (24) are imposed by setting

nþ ¼ 1; n� ¼ 1; w ¼ 0; @vz

@y ¼ 0 at y ¼ 5—6j, where j is the Debye

length. The boundary conditions Eq. (23) are based on the assumption

that the ionic concentrations are in equilibrium at the wall. However,
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a more rigorous boundary conditions may be the imposition of no io-

nic fluxes at the wall expressed as follows.

	y¼0;
@nþ

@y
þanþ

@w
@y
¼0;

@n�

@y
�an�

@w
@y
¼0;

w¼ f; vz¼0
ð25Þ

In the sequel, we call Eq. (23) the Dirichlet boundary conditions and
Eq. (25) the Neumann boundary conditions. The set of Eqs. (19)–
(21), which are strongly coupled, and relevant boundary conditions
is discretized by a finite difference method, and the resulting nonlin-
ear algebraic equations are solved at each time step using the New-
ton–Raphson method when f varies temporally. Once n� and nþ are
obtained at a given time step, the axial velocity vz, governed by the
linear Eq. (22), is easily found using a finite difference method.

DH model
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@2w
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b
2
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Re
@2vz

@y2 þ dN
@/
@z

ð28Þ
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with the following boundary conditions.

	 y ¼ 0; N ¼ eaf � e�af; w ¼ f; vz ¼ 0 ð29Þ
	 y ¼ 1:0; N ¼ eaf � e�af; w ¼ f; vz ¼ 0 ð30Þ

Eq. (29) represents the Dirichlet boundary conditions where the
equilibrium ionic distributions are assumed. The Neumann bound-
ary conditions corresponding to the no ionic fluxes at the wall may
be written as follows
	 y ¼ 0;
@N
@y
þ 2a

@w
@y
¼ 0; w ¼ f; vz ¼ 0 ð31Þ

Since the ionic flux is approximated by Eq. (7) in the Debye–Hückel
model, Eq. (31) results from Eq. (25). Eq. (29) is the Dirichlet bound-
ary conditions for the DH model while Eq. (31) is the Neumann
boundary conditions for the same model. Since Eq. (26) is a linear
equation for N, it can be solved easily using a finite difference meth-
od. Once N is found at a given time step, Eq. (28) is solved using a
finite difference method to find the axial velocity vz. If the potential
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w is needed, it is found by solving Eq. (27) using N at the same time
step. We may employ either the Dirichlet or Neumann boundary
conditions at the wall.

PB model

@2w
@y2 ¼ b sinhðawÞ ð32Þ

@vz

@t
¼ 1

Re
@2vz

@y2 þ 2d sinhðawÞ @/
@z

ð33Þ

	 y ¼ 0;1; w ¼ f; vz ¼ 0 ð34Þ
The boundary condition at y=1 may be replaced with

	y ¼ 5—6j; w ¼ 0;
@vz

@y
¼ 0 ð35Þ

when the Debye length is very small.
Contrary to the NP model and the DH model, the PB model can-

not take care of the dynamics of the electric potential w. Whenever
the zeta potential varies, its effect on w appears instantaneously in
the PB model. One can find analytic solution of Eq. (32) with the
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relevant boundary conditions given by Eqs. (34) and (35) as
follows.

w ¼ 2
a

ln
1þ e�

ffiffiffiffi
ab
p

y tanh a
4 f
� �

1� e�
ffiffiffiffi
ab
p

y tanh a
4 f
� �

2
4

3
5 ð36Þ

First, we compare the NP-d model with the NP-n model and the DH-
d model with the DH-n model to investigate the effect of boundary
conditions on the profiles of zeta potential and vz when f ¼ 0:5 and
@/=@z ¼ 100. Fig. 1a and b show that both the Dirichlet boundary
conditions and the Neumann boundary conditions yield exactly
the same w and vz profiles for the NP model and the DH model at
ða;bÞ ¼ ð0:05;103Þ and ð1:0;106Þ. In the sequel, we adopt the Dirich-
let boundary conditions for the NP and the DH models. Fig. 2 shows
the comparison of NP, DH and PB models for various values of ða;bÞ.
Compared to the NP-d model, which is the exact model for the elec-
troosmotic flows, Fig. 2a and b show that the PB model yields inac-
curate results when the electric double layer overlaps at the center
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of the channel, which occurs at small values of ða;bÞ, while the DH
model yields accurate results. On the other hand, at large values of
ða;bÞ the DH model yields inaccurate results but the results of the
PB model coincide with those of the exact NP model as depicted
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the far field from the channel walls, which is tantamount to non-
overlapping of EDL, and the DH model can be derived from the
NP model when a is small.

Next, we consider cases where the zeta potential varies sinusoi-
dally. Fig. 3a–c show the results of the NP-d model, the PB model
and the DH-d model at the stationary state when f ¼ 0:5 cos xt
with ða; bÞ ¼ ð0:1;104Þ, where x ¼ 10�2p (Fig. 3a), x ¼ 10p
(Fig. 3b) and x ¼ 104p (Fig. 3c). When x ¼ 10�2p the ionic distri-
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butions in the electric double layer are almost in equilibrium due
to the slow variation of zeta potential, and Fig. 3a shows that the
PB model and the DH-d model predict accurate results as in steady
case depicted in Fig. 2c. At this slow variation of the zeta potential
the dynamic behavior of ionic distributions, predicted by Eqs. (19)–
(21) or Eqs. (26) and (27), does not appear and the prediction of the
PB model which assumes equilibrium ionic distributions is almost
the same as that of the exact NP model. Since the value of ða; bÞ pair
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is small the DH model also yields accurate result. However, if x in-
crease to 10p the PB model based on the equilibrium ionic distri-
bution yields quite inaccurate results when compared to those of
the exact NP-d model as shown in Fig. 3b. Fig. 3b shows that the
DH-d model yields accurate results at this small value of
ða; bÞ ¼ ð0:1;104Þ since it can also take care of the dynamics of cat-
ions and anions. At a very high frequency of x ¼ 104p, the discrep-
ancy between the NP-d model and the PB model becomes more
apparent as depicted in Fig. 3c. If the dynamics of ions is taken into
consideration as in the NP-d and the DH-d models, Fig. 3b and c
show that the predicted induced electric potential w outside the
electric double layer has nonzero values at x ¼ 10p and
x ¼ 104p, and it oscillates in accordance with the f variation,
resulting in different vz profiles from those predicted by the PB
model. At x ¼ 104p, it should be noted that the exact w profile pre-
dicted from the NP-d and the DH-d models is a plug profile, which
is quite different from the one predicted by the PB model. The
velocity vz predicted by the NP-d and the DH-d models is almost
zero contrary to the incorrect nonzero vz profiles of the PB model.
To investigate this phenomenon further, we plot nþ;n� and
N � n� � nþ obtained from the NP-d model at several instants for
x ¼ 10p and x ¼ 104p in Fig. 4a and b. These figures show that
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the concentrations of the cations and the anions deviate from unity
and oscillate in accordance with the zeta potential only near the
walls, resulting in vanishing value of Nð� n� � nþÞ over the domain
except within the concentration boundary layer near the walls. As
the frequency x increases from 10p to 104p, the concentration
variation at the wall cannot propagate fully into the domain, and
thus the thickness of the concentration boundary layer of N is re-
duced. Since the driving force for electroosmotic flow is expressed
as dN @/

@z (cf. Eqs. (22) and (28)), the magnitude of vz diminishes as
x increases. Contrary to the NP and the DH models, the PB model
always assume equilibrium profiles for the ions, resulting in a large
value of electroosmotic body force and consequently a large vz va-
lue over much wider flow domain. Fig. 5 shows the N distribution,
which are equivalent to the electroosmotic body force in each
model, for the NP, the DH and the PB models when x ¼ 104p. This
plot apparently reveals that the PB model incorrectly predicts a lar-
ger electroosmotic body force at x ¼ 104p, resulting in a large vz

value as shown in Fig. 3c.
Results for the case where the ða; bÞ value is ð2:0;106Þ, which

corresponds to a very small Debye length, are presented in
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Fig. 6a–d. For a ¼ 2:0, which corresponds to a large value of zeta
potential, the Debye–H”uckel model becomes inaccurate and the
PB model yields results consistent with the NP model at low fre-
quencies of x ¼ 10p and x ¼ 100p as plotted in Fig. 6a and b.
As the frequency increase to x ¼ 104p (Fig. 6c), the dynamic
behavior of ions becomes important and the PB model which as-
sume equilibrium profiles of ions predicts quite inaccurate results.
The DH model, although it can take care of the dynamic behavior of
ions, yields inaccurate results because the large value of a or zeta
potential invalidates the DH model. However, contrary to the case
of ða; bÞ ¼ ð0:1;104Þ (cf. Fig. 3c), the exact NP model as well as the
DH model predict large values of vz at x ¼ 104p because the fast
oscillation of ions in the thin concentration boundary layer near
the walls induces sufficient electroosmotic driving force at this
large ða; bÞ value. On the other hand, if the frequency increase fur-
ther to x ¼ 106p the thickness of the concentration boundary layer
becomes sufficiently thin such that the exact NP model as well as
the DH model predict diminished vz as plotted in Fig. 6d. On the
other hand, the PB model incorrectly predicts still large value of
vz for x ¼ 106p and ða; bÞ ¼ ð2:0;106Þ.
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Finally, we consider the case where f ¼ 0:5 and @/
@z ¼ 100 cos xt.

If zeta potential is constant the external electric field @/
@z cannot

influence the profiles of cations and anions as expressed by Eqs.
(19)–(21) and Eqs. (26) and (27). When the external electric poten-
tial is imposed along the channel walls with homogeneous zeta po-
tential, @n�

@s ¼ 0 and @/
@n ¼ 0 in the thin electric double layer. Here, s is

the tangential direction and n is the normal direction to the wall,
and @/

@s is spatially constant. Then the terms r � ðn�r/Þ in Eqs. (1)
and (2) become zero and the ionic distributions are not influenced
by the external electric field as demonstrated in Park et al. [2].
Therefore, it is expected that the PB model yields accurate results
for all values of x when the ða; bÞ value is large while the DH mod-
el fails at large ða; bÞ value when the zeta potential is constant.
Fig. 7a and b show the comparison of various models when
x ¼ 104p and ða; bÞ ¼ ð0:1;104Þ (Fig. 7a) and ða; bÞ ¼ ð2:0;106Þ
(Fig. 7b). At small value of ða; bÞ, Fig. 7a shows that the vz profiles
obtained by the NP-d, the DH-d and the PB models are the same. At
large value of ða; bÞ, Fig. 7b shows that the predictions of the DH-d
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model are erroneous while the PB model yields results in agree-
ment with the NP-d model for all oscillation frequencies of exter-
nal electric potential.

4. Conclusion

Employing the Nernst–Planck model, the Debye–Hückel model
and the Poisson–Boltzmann model, the electroosmotic flows gen-
erated by temporally varying zeta potential are investigated. The
temporally varying zeta potential is recently adopted for pumping
or mixing of fluids in microfluidic devices. The DH model is derived
from the NP model, which is exact, under the condition of small
zeta potential. On the other hand, the PB model assumes equilib-
rium distribution of cations and anions in the electric double layer,
thus neglecting the dynamic behavior of ions. It is found that the
PB model yields accurate results when the frequency of zeta poten-
tial oscillation is low, and the DH model yields accurate results for
small value of zeta potential. However, for either high frequency of
zeta potential oscillation or large value of zeta potential, one must
adopt the NP model to get accurate predictions of electroosmotic
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flows. On the other hand, for fixed value of zeta potential and oscil-
lating external electric field, either the PB model or the DH model
may be employed instead of the NP model for all oscillation fre-
quencies of external electric field except at large values of ða; bÞ
where the DH model breaks down.
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